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Abstract.

We presenta new O(7 lg Ig n) time sort algorithm that is more robust than 0(n) distribution
sorting algorithms. The algorithm uses a recursive partition-concatenate approach, partition-
ing each set into a variable number of subsets using information gathered dynamically during
execution. Sequences are partitioned using statistical information computed during the sort
for each sequence. r~ t - (J)

Space complexity is 0(n) and is indepe dent from the order and distribution of the data. If
the data is originally in a list, only 0() extra space is necessary.

The algorithm is insensitive to the initial ordering of the data, and it is much less sensitive
to the distribution of the values of the sorting keys than distribution sorting algorithms. Its
worst-case time is 0(n lg lgn) across all distributions that satisfy a new 2fractalnesseriterion.

This condition, which is sufficient but not necessary, is satisfied by any set with bounded length
keys and bounded repetition of each key. or^& I

If this condition is not satisfied, its worst case performance degra4is gracefully to 0(nlgn).

In practice, this occurs when the density of the distribution over f[(n) of the keys is a fractal
curve (for sets of numbers whose values are bounded), or when the distribution has very heavy
tails with arbitrarily long keys (for sets of numbers whose precision is bounded).

In some preliminary tests, it was faster than Quicksort for sets of more than 150 elements. The
algorithm is practical, works basically in place can be easily implemented and is particularly
well suited both for parallel processing and for external sorting. (

Categories and Subject Descriptors: [F.I.2] Probabilistic Computations, [F.2.2] Sorting.

General Terms: algorithms, performance.
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1. Introduction

§1 Introduction

A robust sorting algorithm of 0(nlglgn) time complexity will be presented. For any
sorting method which compares directly the values of the keys, it has been shown [11 through
an analysis of the depth of the resulting decision trees, that their performance can be no
better than 0(n Ig n) . From the decision point of view, each time we perform a comparison
between two elements, we generate a single bit or information, indicating which of the two
elements is bigger. Our aim here will be to generate more information each time that we look
at the value of a sorting key. This will be accomplished by having the algorithm make always
a first pass over the data, from which statistical information will be dynamically gathered.
Later, when the algorithm sees a value, it will use the statistical information it has about the
context in which this value appears, instead of making direct comparisons. By doing so, the
expected information extracted each time a value is looked at will be much higher than by
direct comparisons. One of the consequences of this is that the method is particularly well
suited for external sorts, because each key needs to be "seen" fewer times than with other
methods.

Statistical information has been used to estimate the median for Quicksort in many
different ways 1151, resulting in substantial improvements of the time constants, but not in
the "big oh" of the algorithm.

On the other hand, there is a class of partitioning sorting methods which rely on statistical
information and attain an expected linear sorting time for uniform (21 distributions, for din-
tributions that are "sufficiently smooth" [91, and, the most general, for distributions that satisfy
a Lipschitz condition [171. Unfortunately, their actual performance degrades significantly when
used on arbitrary distributions. Their lack of robustness is due to the fact that when they
have no a-priori information about the data distribution, for non-uniform distributions, and
particularly for very badly-behaved ones, they distribute the keys poorly [11]. Hence, although
they are 0(n) time, their constants may become very large. Adaptive Sort provides increased
robustness in exchange for a negligible increase in its asymptotic time-complexity.

This paper has the following main parts: First, a Pidgin-Algol version of the algorithm

is presented and we discuss the main points. Then we prove that the algorithm works in
expected time O(nlglgn) for uniform distributions. Next, we do a robust analysis in which
we extend this proof showing that it is worst case 0(n Ig Ig n) for all distributions that satisfy
the "fractalness" condition (we define this condition rigorously in the analysis section). We
complete the time analysis showing what happens when not even the fractalness condition can
be guaranteed. Then we present some improvements that make the algorithm practical, and

we analyze the space utilization, showing that if data is already organized in a list structure, it
sorts basically in place. Next, a parallel version is discussed, and we present a "matrix sort,
which is a dual of adaptive sort. We complete the paper presenting some experimental results
that show a significant improvement over other sorting methods, and the key functions of this



1. Introduction

experimental implementation. In the conclusion we point to some of the problems left unsolved.

The method has practical applicability and I hope the reader will enjoy the mathematical

aspects of the analysis of the algorithm. At several places, it seemed there was a need to

present several things together. Since the paper forces us to a linear presentation, there may
be ocasions when the only way to make sense out of something will be to go on till each thing

falls into place.

*1
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4 2. Description of the Algorithm

§2 Description of the Algorithm

The algorithm is similar to Quicksort [7] in that a sequence is partitioned, subsequences
are recursively sorted, and finally these sorted subsequences are concatenated, yielding the
result. Instead of partitioning each set into two subsets, we will use a function to compute
the best number of partitions. The way in which we will partition the set S, is by making a
statistical analysis of S which will allow us to build a hashing function Hs(x). This hashing
function will be tailored to the set S, and given an element of S it will indicate to which of the
subsets into which S is being partitioned, the element should go. If the keys are not numbers,
this method requires that we map the keys appropriately onto numbers.

function AdaptiveSort(S:sequence) return:sequence;
if JSJ< Threshold
then return (SmallSort(S)) (0 used for all subsequences e)
else begin "AdaptSorting"

NumberOfPartitions o.-Adaptive(ISI); (* decides it in constant tim e)
Hs(x) *--BuildHashingFunction(S); (s makes a function in O(n) time e)
if DistributionSlope(S) > MaxSlope(S)
then return (SmaUSort(S))
else begin "UsingBin'

local variable Bin:array(l..NumberOfPartitions] of lintersToSequences
toreach Element in S do (e in O(n) tine for the whole sequence e)

put (Element) In Bin[Hs(Element)j; (0 Put each element in its bin *)
Result *--Empty; (e Initialize result e)
for Index .-1 to NumberOrPartitions do (* Sort each subset recursively e)

append (AdaptiveSortBin lndex])) to Result; (o and then return *)
return (Result); (0 the concatenation of those sorted subsets e)

end "UsingBin*;
end "AdaptSorting.

4 "Figure 1: A condensed Pidgin-Algol version of Adaptsort

eiFor some conditions that we will explore later, Adaptsort invokes "SmallSort" (fig.1).

Depending on whether we are interested in the expected time or worst case time, it will be
Quicksort or Mergesort respectively.

We know from analyzing recurrences that it does not matter if we split the sequence In
2, 3, or K subsequences as regards to the time order of the algorithm 11,101; but as we will
see in the recurrence analysis introduced later, that holds only if the number of partitions is
a constant throughout the recursion. If instead, at each level of recursion, we partition the
sequence in a number of subsequences which depends on the size of the sequence, then we will
see that we can get better bounds than just O(n Ig n). Another requirement for such a sub-
O(n Ig n) algorithm, is that we cannot use comparisons between elements, because otherwise It
has been proven that we could do no better than O(nlgn) [1,10].

The recurrence which gives the time complexity of the algorithm will show which are

K.: L . ....



2. Description of the Algorithm

the critical parts of the algorithm which have to be completed in either linear or constant

times (these required critical times appear as comments in the Pidgin-Algol version). Before

we analyze the algorithm we will first show how its subparts can be completed in the required

time, so that the reader will have a complete picture of Adaptsort.

To do the partition, we sweep through a sequence and decide for each element to which

subsequence it belongs. We must decide to which subset each element goes in constant time,

because at each level of the recursion we have only O(n) time to do the partitioning of the set

(where n is the size of the set S)

This can be seen as distributing the n elements of a set in r(n) bins, so as to attain a

partial ordering of the n elements of the set. Since we need to choose the appropriate bin in

constant time, we need some kind of hashing function. A search for the right bin cannot be

considered because we would have to examine bins, and the number of bins is a function of

n. Since the partitioning must introduce a partial ordering of the values, the hashing function

must be monotonic. That is, we need to ensure that

Vi,j (i<jAzEBiniAyEBin) =* z < y (2.1)

Its domain depends on the values of the keys of the set, and its range is a subrange of integers

from I to r(n). Since this hashing function must partition each of these sets into subsets of

similar size, it becomes evident that the hashing function will have to be tailored to each set.

Moreover, the computation of the parameters of such a hashing function should take at most
O(n) time, because they must be computed once for each set. Ideally we need a function which

we could apply to all the sets by just adjusting some of its parameters for each particular set.

A function which satisfies all of those prerequisites, is the cumulative distribution function

(CDF); or more precisely, a curve which approximates it. In particular, if we knew beforehand

4 the distribution of the set to be sorted, the most adequate family of fitting curves could be

used [171 (i.e., if we knew the distribution under which the keys were generated, we can pass

them in linear time through a filter that will re-distribute them uniformly), but we will assume

this information is not available.
Many different statistical parameters can be measured in linear time, to obtain approxima-

tions, which are usually called empirical cumulatie distribution functions (ECDF). There is

.1 no standard definition for the ECDF [171, and we will use several ECDFs. The first one,

ECDFM 4fM.2, is a line between [Smin,0] and [Sma, 1) that allows to map the keys from a set

S of size n onto r(n) bins, by dividing the span between Stai. and Sm.. in r(n) equal intervals.

This is a very crude ECDF that may result in a partitioning that is poor in practical terms,

but has the advantage that it simplifies the analysis of the algorithm. In the section on making

the algorithm practical we propose a much better one (ECDFUCD.5), whose analysis is more

complicated.

We will see later why for a set of size n, r(n) - and MazSlope(n) kt n/(Ig n)5 '.
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The rest of the algorithm is fairly clear from the Pidgin-Algol version, so we will proceed with
the analysis.
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§3 Time Complexity of Adaptive Sort

First we discuss informally some of the issues, so that an intuition for what we are trying
to prove builds up. Then a rigorous derivation of the expected and worst case time complexity
of the algorithm will be given. We start by analyzing the sorting time for uniform distributions,
and afterwards we present a robust analysis to extend these results to other distributions. We
assume for this analysis that we can do arithmetic operations with key values in 0(1) time,
which is analogous to the assumption that we can do comparisons of keys in 0(1) time for the
analysis of Quicksort.

3.1 Informal Discussion of the Sorting Time

The effect of using a linear ECDF on non-uniform distributions, is to partition a set into
subsets of uneven size. But, since for each subset new measures are taken, the initial error tends
to be corrected at lower levels of recursion. That is, a recursive smoothing of the distributions
occurs. For example, for a Gaussian distribution, the first recursion level would partition the
original set into subsets of uneven size, but these subsets might be partitioned almost as if they
had resulted from a uniform distribution.

Hence, for "smooth distributions" the sorting time will be O(n Iglg n) but different dis-
tributions will differ by a constant factor; the closer to a uniform distribution, the lower the
constant of the O(n Ig Ig n) time complexity will be.

It is apparent that the worst cases would be given by a distribution whose density fluctuations
were such that at each recursion level the partition produces mostly empty bins, because the
hashing function cannot separate the clusters of values, so that finally we have most or all the
keys in a few bins or even in a single bin. This can happen only with distributions that at

each recursion level have a few sub-clusters whose internal distributions are again characterized
, by isolated far-appart clusters. The density function of such a distribution would be a most

peculiar fractal curve [6,131.

Note that this worst case situation is not critical unless fl(n) of the key values are
distributed in this way. Such distributions are a generalization of the Devil's Staircase (131,
and some of the properties of these curves are analyzed in [6.

The interesting point is that such distributions can be easily checked out during the sorting,
because at each level of recursion the clustering occurs over smaller segments of the values
domain, resulting in locally steeper slopes in the distribution curve. Hence, Adaptsort can

use as a fallback sort either Mergesort or Quicksort to sort just the subsets which for some
reason were not being partitioned efficiently with their hashing functions, without needing at
all to find the reason for the problem. It is enough for the algorithm to be able to decide

I//

'I



3. Time Complexity of Adaptive Sort

that a subsequence is not being partitioned adequately so as to switch into Quicksort for that
ubsequence only. In the worst case, we have a peculiar distribution in which this happens for

every subsequence, and the algorithm then takes O(n Ign) time.

For such distributions (with a fractal density) Adaptive Sort would be slower than Quicksort,
but only by a constant factor (The detection of this situation takes only O(n) time, and is a by
product of the statistical pass). For all the distributions that satisfy the fractalness criterion
the sorting will be O(n Ig Ig n) time, with the advantage over Distributive Sorts that its constant
factor is less sensitive to the "badness" of the distribution.

3.2 Expected Time for Uniform Distributions

Let T(n) be the time it takes to sort a sequence S of size n, and let r(n) be the number of
bins into which S is partitioned. Let in; < qi,...,q, >1 be the event that given n values, q,
values land in bini, for i = 1,... r. The space of possible events is given by the set of r- tuple
of q, whose sum is n. Then,

E(T(n)) = P(Jn; < qi,...,q, >1) T((n; < q1 ,...,q, >1) (3.1)
q1 --.-+q, ."f

Let K. n be the time it takes to partition S. Then, taking into account the recursive algorithm

presented above,

T(In; < q1,...,q, > ) = K.,n + T(q) (3.2)
6-1

For uniformly distributed keys, we have that the r qjs will have a multinomial distribution with
parameters n, l/r,... 1/r (we have n values to distribute amongst r bins and the probability
of selecting any bin each time is 1/r for any bin). Hence,

.n1
P(In; < qi,...,q, >])-=-(+,' qi!qg!...ql (3.3)

What we have just stated holds only if we partition the interval in equal parts in between the
extremae of the set 131, and is one of the reasons we use ECDFMt"A"(S). We will use a more
robust ECDF later (less sensitive to possibly isolated extreme values).

Now, we should replace all the r by r(n), and find the function which minimizes the
functional above. To find such an optimal partitioning function r(n) we should minimize the
recursive functional E(T(n)), where E is the expected value of T(n). This would be trivial if
we knew how many values will end up in each bin, but we only have probabilistic expressions.

Although this might still be feasible, the complexity of such a task is quite considerable,
even for the simplest distributions, and close to impossible for a robust algorithm. Note/



3.2 Expected Time for Uniform Distributions 9

that r(n) = k results in O(nlgn) algorithms (Quicksort class), while r(n) = n/k results in
O(n) algorithms (Distributive class) that cannot be recursive and are not very robust. An
interesting class to explore would be that resulting from approximations to r(n) = pn 9 . For
Adaptsort we will choose p = I and q = 1/2, as a compromise in between the robustness of
QuickSort and the excellent best performance of O(n) sorts. Hence, in this paper we will use
r(n) = V/;i instead of looking for an optimal partitioning function, and leave for a future paper
the search for an optimal partitioning function.

For a uniform distribution, the expected number of values in each bin will be n/r, and
the amount of values which fall outside of a small interval around E(r) tends very fast to zero
[3,8]. Thus, when we solve the recurrence, we would like to approximate the time required to
compute the sort of the elements in each of the r bins by r times the time required to sort a
bin with the expected number of elements. Before we proceed, we will justify this replacement
of the r bins of slightly different sizes by r with the same size. From the expressions derived
before, we have

The distribution of values in the r bins are not independent random ooles, because q, +
+q, = n. Hence, it seems as if we would be forced to compute a very complicated expression

to obtain the expected time, but this is not so: As n tends to infinity, the number of random
variables q that we are considering also tends to infinity (r = V'n), but the coupling between
all of them remains just a single linear equation, and their dependence vanishes as n tends to
infinity. When we consider the qjs as random independent variables, these will have a common
binomial distribution with parameters (i, I). Therefore, we can write:

lim E(T(n)) = lim K. n + E(r(qb))

where E(T(qb)) is the expected time it will take to sort the expected amount of elements in

bin&. Now, since we are treating the q as independent variables with a common distribution,
applying the Strong Law of Large Numbers, we can replace the sum by r times the expected
time it would take to sort one bin (E(T(bin))), and we will be arbitrarily close to the value of

the sum, for n large enough.

lim E(T(n)) = lim [K. n + r E(T(bin))] (3.5)

We can now expand the calculation of the E(T(bin)), knowing that their occupancy is binomially
distributed:

lim E(T(n)) lir K. n + r l T(i) (3.6)
r r

i I

r --! - - -- . . - ---- - .--- _- - -_. y. - i



10 3. Time Complexity of Adaptive Sort

For n tending to infinity, we can replace the binomial distribution by a normal distribution

N(z) with the same mean (ju) and the same variance(r 2 ). In our binomial distribution, with

parameters (n, ,), with r = V :

1
r

1 i 
(3.7)

When we use the normal distribution, our integration limits will be -co and co, so the reader

might ask what sense does it make to talk about the time it takes to sort a bin with a negative

quantity of elements. None. What happens is that we are using an approximation in which the

event of a negative value is improbable but possible. Therefore, we have to extend the domain

of definition of T to the whole real field in a sensible manner:

Vz < n. T(z) = T,(n.) (3.8)

Here we have assigned to T(z) for all values of x smaller than the threshold n. below which

the algorithm switches to Quicksort, the time it takes to sort with Quicksort a sequence of sire

n.. Hence, we have increased the value of the right hand side in a harmless way as regards to

obtaining an upper bound for E(T(n)). Since we already know that the time complexity of the

algorithm at least exceeds O(n) , we can drop the linear term, and we will use O(T,) for the

asymptotic behavior of the algorithm.

O(T,,) = lira r fV N(z) T(z) dz

= lira r / - e-(z- '/2' T(z)dz (39)

-lim e(,_n/// T(z)dz

This normal distribution, (z), does not look at all like the usual bell, but is more like a stick
standing at x = Is. Hence, what we will do is to show that both tails around an arbitraryly

small interval [(I - c)A, (I + E)AI can be made arbitrarily small for n big enough.

/-= V _ .V(z)T(x)dz + J(1+),1 )(z)T(z)dz + .)dz

(3.10)

We will expand the third term of the previous expression, and taking into account that )I(z) is

monotonically decreasing after /, we can increase its value to be .X((1 + E),u) everywhere after

_____ - _-_



3.2 Expected Time for Uniform Distribution s1

(1 + E)P.

131 <-((+.)-v'/ # T( ) dz

<v',n J e -43 T(T) d)
4 , + )0 t(3.11)

< -,f- lime ")*- Tm dz

<%/ lir mT(m)e- '2 v

We wanted to prove that 13 can be arbitrarily small, which is equivalent to saying that

Vrn > 0 VE.> 0 V6 >0 3n (4s < ) (3.12)

This assertion is true because there are ns which satisfy it. For instance, making n = m in
the last expression, it is clear that we can make 13 arbitrarily small for any positive value
of e. As regards to I,, it is smaller than 13 because while V(z) is symetric around p, T(z)
increases monotonically, so 11 tends to zero too. Hence the only integral which contributes to
the E(T(n)) when n tends to infinity is 12, which has all its bins of size arbitrarily close to the
expected occupancy (Vq) of each bin. Therefore, it is valid to use the expected occupancy or
each bin when n tends to infinity.

If we call no the size of set for which the overhead of the statistics gathering makes
Quicksort faster than Adaptsort, we can switch to Quicksort below this threshold n., and the
following recurrence represents the time requirements of the algorithm:

4 T(n.) = Kn. I n. = Kg

T(n)=vr-T(v ) + K.n (3.13)

In this recurrence, K, stands for the Quicksort time constant and Ke for the time it takes to sort
(with Quicksort) a tip of the implicit tree of sets (it is implicit in the rccursive computation).
K. is the time per element that it takes to gather statistics, to calculate to which subset the
element corresponds and to move it there. So K. is the time per element to sweep through a
set and partition it. What follows is the solution of this recurrence:

T(n.) = n.T(n.) + K.n! = n.Ke + K.n!

T(n.) = n!Ka + 2K.n. (3.14)

T(n!) = n.Ke + 3K.n

.,, ,, . .. ... . ,

F -r.m= ===,' .



3.3 Worst Case Time Complexity for Arbitrary Distributions 15

3.3.1 The Fractalness Criterie-

First we need to define rigorously YC. For this, we define ECDFP(S), which is a piece-

wise linear continuous ECDF (which converges to the actual distribution as the sample becomes

larger). Let Si be the values of keys in a set or size n. We first define ECDFF(S) for each Si,
as the count of values smaller than Si. Now we extend it to the rest of the span of the set with

linear interpolation for each interval IS, S,+1), and finally we scale it by dividing by in. We

define the fractalness criterion as follows: there is some constant a such that

a > MazSlope,,s(ECDF"(S))[S.. - s Il

We cannot use the fraetal dimension of [13] and need this new criterion, because YJC must

exclude not only all densities whose fractal dimension is greater than 1, but also some others

whose fractal dimension is 1. Before we proceed, I would like to point that although IC allows

to prove interesting properties of Adaptsort, it is overly stringent and for practical applications

we will use a different approach.

Let us analyze what happens when a non-uniform distribution is non-zero over a bounded

domain. At each recursion level, Adaptsort partitions a sequence of size n into V bins, trying

that a similar number of keys fall into each bin. If the distribution is not uniform, the fact

that we use a linear statistical approximation to the actual distribution of the keys, results in
an uneven partitioning.

3.3.2 Bounds on the Worst-Case Time

Suppose that the distribution has a fractal density. That is, at the top level, it looks

like a few sticks (small regions where the density is not zero) standing up, while the density is
, virtually zero almost everywhere else (Of course, then most bins end up empty, and each stick

ends up in a bin by itself). Each time we go one level down in the recursion, the distribution

or values inside each stick again looks just as a few isolated sticks and is close to zero almost

everywhere else. The effect of this is that at each level Adaptsort will partition sequences in a

A !limited (by the number of sticks) number of bins, decreasing its sorting efficiency.

We need to quantify this efficiency, and the entropy H of a partition is a natural measure

of the order introduced by a partitioning step. For a sequence of ni elements distributed in V,/

bins with n, elements each, we have [16):

SH _ - i gN (3.17)

/ which has a maximum for a uniform distribution across the bins, and a minimum for all

/ ' the keys in a single bin (&e., if we split the sequence evenly we get the maximum amount of

hi



14 3. Time Complexity of Adaptive Sort

information out of the step, but if they end in a single bin, as we could expect, we have added
no information in the partitioning step). The entropy measure has an intuitive appeal, but

let us justify rigorously its applicability for Adaptsort, because although it is clear that for
extreme distributions it makes sense, it is not obvious that the sorting time for a sequence will
increase monotonically with decreasing entropy.

Suppose that at some stage of Adaptsort we have a partition with k bins, from which we
select two contiguous bins (bi and bj+i), where the elements of b are smaller than those in
b,+. Comparing this pair of bins, call the bin that has more elements bi and the other one
b.,,, and call Ibb.1 and 1b..l the number of elements in each one. If b, is barn, transfer the
biggest element from b, to b,+i, otherwise transfer the smallest element from bi+1 to bi. This
step, which decreases the entropy of the partition, is extraneous to the sort, and will not affect

the final result (a correct sort).

Since the partition among the k bins had already been accomplished, the concatenation
of the k bins once they are sorted will not be affected, and the rest of the bins have not been
altered, the only cause for a change in the sorting time (Ati,.) is that this pair of bins now
have a different number of keys:

At,.ne ___ [T(lbbI + 1) + T(Ib..m - 1)] - [T(Tbbsj) + T(b..I)] >_ 0 (3.18)

because IT(n)I grows monotonically faster than a linear function and Ibbj > 1b,,1 (note that
T(n) is the upper bound we are calculating, and not the actual sorting time). By applying this
step repeatedly, we see that a monotonic entropy decrease results in a monotonic increase of
T(n). Hence, entropy is an adequate measure to determine the worst distributions for sorting
with Adaptsort.

If the distribution satisfies X, when partitioning S of size n into k subsets, there is a
limit (IZl, 1 ) to the number of elements that may fall into a subset Z.

IZl-. = Count?I(S, < Z,.) - Count!.,I(S, < Z.,.)

< n MazS1ope 1,z(ECDFP(S)) [Zm. - Zmi1

< n MazSope.Z(ECDFP'(S)) SiaI - SmiaVi-i (3.10)

< MazSope,.s(ECDFP(S)) [Sm.. - Smia] VIn

Given equation 3.19, there is a minimum to the number of bins in which the originalI sequence may end up partitioned, and the entropy will be at a minimum when the sequence

,, ~.



3.3 Worst Case Time Complexity for Arbitrary Distributions

is split into -- bins with aN/i- elements each, while the rest of the bins end up empty. In

the worst case, this happens for every partition step throughout the sort, so that we get a

recurrence that is similar to equation 3.13:

T = Ta(av) + Kn (3.20)
a

where Tt(n) is the robust worst case time it takes to sort a sequence of size n, while TU(n)

is the expected time it takes to sort a sequence of size n for a uniform distribution (T(n) in
equation 3.16). All symbols not defined here, have the same meaning as in equation 3.13,
with the exception of Kq which becomes the constant factor of Mergesort instead of Quicksort

(i.e., SmallSort becomes Mergesort for worst case analysis).

T(n.) = -T(n.a) + K.n. (3.21)

Similarly to how we defined Kt in equation 3.13 as the time it takes to sort a leaf of the implicit
recursion tree with Quicksort, we define KO:

Ke = T(n.a) < K,(na) lg(n.a) - Kn. lg(n.a) (3.22)

aa

where the inequality results from the fact that a > 1 and the definition of n.. Replacing K.
in the previous recurrence we get

T =(-2) = n.K. + K.n (3.23)

that has the same form as recurrence 3.14. Hence, we can use its solution (equation 3.16) by
just replacing K. ror K,:

%n lg n.'
< n[K. lg(an,) - K. Ig Ig n. + K. Ig Is n) (3.24)

which is order O(n Ig Ig n). This completes the proof that Adaptsort is worst case O(n Ig Ig n) time
across all distributions that satisfy TrC.

A complete expression for the worst case running time is O(n min(kli Ig n, k2 Ig a, k3 Ig ig n)),
where the ki are constants independent rrom the data. An upper bound on the time difference
that it will take to sort a uniform distribution and an arbitrary distribution will be:

=Apul = Ti - Tu < K, lg(a)i (3.25)

Hence, for a given size sequence, the worst case time is O(lg a), and the reason it increases so
S/ Islowly with the non-uniformity or the distribution is that the recursion filters the irregularities

________________________
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in the distributions so that they converge to uniform distributions at lower levels. In tact, it
grows much more slowly than this upper bounds would imply, and we will analyze this (in a
qualitative way) later.

Comparing this with other methods, we see that if we can guarantee that the keys are

uniformly distributed, there is nothing to be filtered, and a Distributive Partitioning algorithm
will work well in 0(n) time. On the other hand, if the distribution departs from a uniform

distribution, the performance of that class of algorithms drops faster than that of Adaptive

Sort, because Distributive Partitioning uses r(n) = 0l(n) which prevents the use of recursion.
It is because of this, that the class of sorts with r(n) = p nq that we mentioned in section 3.2
deserves to be analyzed more thoroughly, as regards to the tradeoffs between expected and
worst case performance across different distribution classes.

Note that although a provides some degree of information on how Adaptsort will perform,

in this form it is only useful for asymptotic analysis, and does not provide a good practical
estimation of the time it will take to sort different distributions. As can be seen in the successive

inequalities in equation 3.19, 'C is not a tight criterion. We could have made a very tight
recursive criterion starting with the last inequality in equation 3.19, but then the criterion
would be almost equivalent to a specification of the sets for which Adaptsort runs in time
O(nlglgn).

.4

-4
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§4 Practical Considerations

In this section we improve Adaptsort by modifying the ECDF used in the partitioning and

by providing practical bounds to the constant associated with YC.

If the values of the keys in S had a uniform random distribution, ECDFJIWM.Z(S) is an

ideal ECDF. If the distribution is not uniform, but we assume that any sequence that we may
want to sort must have some bound on the keys length, the span (Sms - Sta) of values of the
set becomes bounded, and the slope of ECDFM"YMZ(S) becomes bounded by the maximum

number of key repetitions (MaRep). Taking the keys as integer k-bit numbers, the fractalness
of S is bounded by

MazRep 2 1, (4.1)

which can be made arbitrarily small for n big enough. Consequently, almost any set that
we might want to sort seems to satisfy YC. (Note that the precision of the values and their
bounds become only different interpretations of the keys; therefrom the single name for TC,
which covers both fractal densities over bounded values with unlimited precision, and long

tailed densities over unbounded values with bounded precision.)

The problem is that although this is valid in an asymptotic analysis, n results too big for

practical purposes. The reasons for this are both in that ECDF Mr"' m (S)is not a practical
ECDF (it is extremely sensitive to isolated extreme points) and in that 'C is not a very tight
criterion in that it provides a bound (equation 3.25) on time that goes to infinity when a
tends to infinity although the actual time may be in fact bounded (C is too sensitive to local
perturbations in the distribution).

Hence, we chose for the implementation or the algorithm ECDFAUtD(S), which will be
very similar to ECDFMr"IMrz(S)for uniform distributions, but will provide a better ECDF
otherwise, and in the next section we concentrate on rC.

4.1 Replacing ECDFMir M' U by ECDFAvID.

ECDFAvWIDv(S) is a linear ECDF that has the same average and the same average deviation
as the actual distribution of S. We calculate its slope and origin (also in linear time) from the
following set of equations (see figure 2):

(Y(z) = Slope.. z + Origin.
SY(Average. + 2 AuerageAbsoluteDeviation.) = I (4.2)
Y(Average. - 2 AverageAbsolteDeviation.) = 0 i!
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slope1 n

4 AvgAbaDev. 4 E" 1 Javerage. - valu I

I (4.3)
origin. = - - slope. average.

where valuel,.... are the values of the keys of the set S.

The approximation Y(z) is then scaled so that instead of returning values from 0 to 1, it

will return integers between 1 and r(n):

H.(z) = L r(n)(z.slope. + origin.) + 1 J (4.4)

and then it is embedded in a conditional (see figure 2) to insure that it returns only valid bin

indices, even for atypical values of z. When the distribution has a very steep slope, the average

deviation tends to zero, but we will see next that this problem can be solved easily.

H.(x)

r(n)

Average.
4 ~I

AvgAbsDev.

4. AverageAbsoluteDeviation.

,1 Figure 2.: The hashing function.

*i Note that many other possible hashing functions satisfying the requisites of the algorithm
can be used [17,2]. We chose a piece-wise linear one because of its simplicity, and we will
use it for all distributions because the potential advantages of more precise approximations do
not seem to justify the increase in calculation complexity. These approximations give us the
hashing functions that we need so as to partition each of the sets which is generated throughout
the recursion (for each set that we partition, we compute a new set of statistical parameters).
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4.2 Graceful Degradation when IC is not Satisfied

Here we analyze what happens when there is absolutely no requirement on the order or

distribution of the data to be sorted.

In the description of Adaptsort we see that after calculating the statistical parameters of a

sequence so as to build the hashing function, we check for the slope of the distribution. If this

slope is excessive, the algorithm chooses smallsort for the part of the tree below this sequence.

A key question is: what is an ezcessive slope? For the analysis of the asymptotic behavior

of the algorithm, YC is an adequate criterion, and any constant will do, but for practical

applications we can choose an optimal value for the maximum slope that will result in a better

performance. To obtain this, we equate the time it would take Quicksort to sort a sequence

and the time it would take Adaptsort to do it

{ TAdApt..* i) =Is
T .ptt¢(n) = n [K. lg(an.) + K. Ig(Fl-)]

'Ad~t.vt
11 J= gnj- (4.5)

TQuitcksort(fl) = K~n Igit

which results in

n. ngnL.. -- iLgi. K, lg.' .F g)
0 m=

In practice, we can use this optimal criterion to decide when to sort a sequence as if it didn't

satisfy YC, even though it may actually satisfy it, or to use Adaptsort even though the data

may not satisfy the global YC, because it is being sorted locally faster than it would with the

fallback sort. The reason for this is that although Adaptsort would be asymptotically better,

I ~ we can do better by switching to an O(nlgn) sort (by definition of am.) for the finite size

I sub-sequence we are sorting, when the slope exceeds am.. The function MaxSlope(S) that

appears in the Pidgin Algol description of the algorithm corresponds to this calculation.

If JrCwere not satisfied, Adaptsort simply changes strategies for the part of the data

O(nlgn) time if this happens almost everywhere. Hence, even though YC may not be satisfied,

there is a graceful performance loss, and in practical terms this loss might be negligible for

most sets that are usually sorted (ie., neither lengths of segments of Brownian movement 1131,

nor atomic decay times, nor unbounded salaries, etc.)
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§5 Space Complexity of Adaptsort

Looking at the Pidgin Algol description of the algorithm, we notice that the OForeach
loop produces elements which are consumed by *Put. In Sin*, freeing and occupying

respectively one cell of storage. Therefore, the elements to be sorted, in fact, are never moved;

only pointers are reset to point to other locations. A list representation is necessary to perform

all the required operations within the given time constraints, so just for the set we need space
for n values and n pointers. The space required for the recursion is used basically in local

arrays of pointers (see Section 2) that point to the partially formed sublists, so that appending
elements to any of these sublists can be done in constant time.

The size of the biggest array is V/j-j. From then on the size of the arrays used in deeper
levels of recursion decreases very fast. The size of the arrays used at recursion level d (starting

the count with I for the top level) will be of 0(n[( /2)'l. The algorithm expands through the

recursion an implicit tree of arrays in a depth first fashion. Since the arrays are no longer

needed when the algorithm pops a level up in the recursion (see Section 2), this space can
be reused. The arrays are no longer needed once we pop a level in the recursion because

they are used only to keep pointers to the list of subsequences while we partition and sort the

subsequences. But, when we pop a level of recursion we have just completed the joining of the

sorted subsequences, so the array is no longer needed. Since no more than I array is needed

for each unfinished recursion level, it is clear that the total space requirements for the arrays
is of O(Vui) (we have a series which decreases faster than a geometric series, and whose initial

term is ,fn).

In any Algolic language the reuse or the space we used in the local arrays comes for free,
while in others it may come at the expense of garbage collection. If for some reason the

arrays' space were not reused (either explicitly or through the space allocation management),
their number would grow very fast as we go deeper in the recursion and a simple calculation

shows that at recursion level d, we would need n71-11 array locations. To avoid unnecessary

calculations, we can get an O(n Iglgn) space upper bound directly from the time performance
of the algorithm. Nonetheless, for any reasonable value for n, the space lost even if we do not
reuse the arrays, is minimal (e.g., to sort a million elements, the top level needs one array of a

thousand locations, the second level will have a thousand arrays of an average size of 32. At
this level the sets hanging from the arrays are smaller than the threshold which makes it faster

to switch into Quicksort, so the recursion of Adaptsort ends having used about 3.3% of n for

arrays space). Hence, from the practical point of view even if we do not reuse the arrays space,
the necessary storage increases very little.

In conclusion, Adaptsort has an O(n) space complexity, and if the data is already In a

list, the extra space. requirement is only O(yni), and we can consider the algorithm as to be

working basically "in place'.
/

12 -. .
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§6 Parallel AdaptSort

For each sequence at any recursion level, first the set has to be completely partitioned. As
soon as that is done all its subsequences can be sorted concurrently. Since the optimal number

of partitions is fairly big, as soon as the original set is partitioned once, there are enough tasks

to keep many processors busy most of the time in a natural way.

Since the set is sorted in place, and multiple processors can be doing some sorting tasks,

it seems as if there is a risk of creating havoc with the list unless a quite restrictive control to

the list access is established. This is not so because each process works on a piece of the list

disjoint from all others. Once a process is granted access to a pointer to a list, it can go ahead

and need not worry about concurrent tasks being performed simultaneously with other parts

of the same list. So in principle, the bottleneck would be in the access to the memory.

Both the calculation of statistical parameters and the partitioning of each sequence are

ideal tasks to be done faster with a pipelined floating point processor. Since these sequences

are always relatively big, and additions and multiplications are needed for each element, the

pipeline of such a processor would be used efficiently, with the consequent speed-up.

Another way of increasing the speed would be to modify the hardware by adding a sorting

net [101. This net could sort the small sets for which Adaptsort now uses Quicksort. Since

this net could function in a pipelined mode, the basic task of the program would be only to

partition recursively the sets, send them one after the other to the net to get them sorted, and

then concatenate the sorted sublists.

'I.

/
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§7 Matrix Sort

We have seen that a partition/concatenate sort can work in time less than Q(nlgn)
Hence, it is natural to ask: can we do the same with a split/merge sorting scheme? (i.e., analogously
to the relation. between Quicksort and Mergesort) Well, it seems we cannot.

The data structure for such a Mergesort, using square root as the partitioning function is
interesting in the sense that if the set to be sorted is loaded in contiguous locations of memory,
these can be looked as forming a square array which is partitioned into its columns. Recursive
calls for each of the columns will sort these columns, and then the columns will be merged to
obtain the sort of the full set.

Since each column also will be stored in a block of contiguous locations, we can consider
each column recursively as a new square submatrix, whose columns will again be considered
in such a way, until we reach a column of less than a certain size. At this point, exactly as
in Quicksort, we can switch to any simple in-place sorting algorithm. Note that in the deeper
levels of recursion, there is no extra arithmetic for sub-subindices, but just added offsets. That
is, the program should deal explicitly with the calculation of the location of the elements of the
arrays of deeper levels of recursion. For the sake of simplicity the size of the set will be assumed
to be n.( ") with both n. and q positive integers, so that we can recursively keep subdividing
the matrix into square submatrices until the column size drops to no. (At the q-th recursion
level)

We will see that the difficulty with this algorithm lies in the multiple source merging, which
limits its running time to O(n Ign). To merge these columns we can maintain a priority queue
which will have pointers to the partially consumed (by the merge) columns. At each step of
the merge, the element pointed to by the top of the priority queue is taken out from its column

4 and appended to the current merge buffer. The queue has to be updated each time the smallest
element is taken from the queue, by introducing the next element of the same column into its
appropriate position in the queue. This can be implemented as a heap with as many elements
as columns are being merged, so it would take an expected time of O(Ig (number of coLumns))

,4 to pick an element from one of the columns being merged. Since the number of columns for a
square matrix with n elements is V , we get the following recurrence:

T(n.) = Kn. lg(n.) = K,

T(n) = '/n T(v.'/ ) + K,n lg(vr ) (7.1)

In this recurrence, we no longer have a linear independent term, as in adaptive sort. K. stands
for the time it takes to pick a column from the priority queue, put its next element in the
merged buffer, and update the queue.

AI'
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T(n' ) = n.T(n.) + K,n!2 lg(n.)

T(n ) = nT(n2.) + K,n. Ig(n!)

= Kcn! + Kpn. Ig(n.)[1 + 21 (7.2)

T(n8) = Ktn. + Kpn. Ig(n.)1 + 2 + 41

From the preceding expressions, it is clear that the general term is:
rn-

r(,4,'2)) = t( .2.- + Kn?.2.) lg(n.) F 2'

,- ft 1 K, 1)] (7.3)
( f.- + K, Ig(n.)(2m - 1)

By renaming variables as in the previous recurrence:

T(n) = n + K, lg(n.)(g,. (n) - 1)

= n ['L+ K,(lg n - IS n.)] 7

= n [Kq Ig n. + K,(Ig n - Ig n.))

= n [(K, - Kp) Ig n. + K, IS n]

This last equation can be easily verified by induction, and it shows that matrix sort has an
expected time complexity O(n Ig n). In the worst case each of the m lists has a single element,

so that merging them in linear time would be equivalent to sorting by comparisons in linear
time, which is not possible [10). So it seems that there is no Mergesort that takes time of

* I only O(nlglgn) . Otherwise, matrix sort has the advantage of not needing to make statistical

4 measures, and does not need to put the keys in a list. It needs about 2n locations of storage,

because of the buffers needed to make the merging. The biggest one is needed to merge the n
elements contained in the % columns or the top level.

t
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§8 Experimental results

The program was tested on a DEC-20/60 and on a Foonly F2 machine (a KA-10 emulator)
The numerical values given in this section correspond to both programs coded in InterLisp
(without interspersing machine language). The data samples were lists or uniformly distributed
random numbers. Since the speed of this algorithm depends heavily on the speed of floating
point operations, as well as on its coding and compilation, the following results are just
suggestive but not conclusive. Furthermore, as has been shown in [14,151 for Quicksort,
variations of the algorithm, as well as the way inner loops are compiled could improve the
performance of Adaptsort substantially.

The crossover point between Quicksort and Adaptsort was found in sets of 150 elements.
For sets of 20,000 elements Quicksort took 48% more time than Adaptsort. The following

graph shows a comparison of the average times required for sets of different sizes.

Time

1.0 - . . . .

0.5

0.0 150 10000 20000 Sias

Figure 3.: a oaKI..10

From the values of this experiment, we can calculate the values of K. and Kq for Adaptsort
and Quicksort respectively. Replacing these values in the respective expressions for T(n), we
get that the constant, terms in TAd...A,t(%,) get approximately canceled, so that we get the
following (approximate) comparative equations for the two methods (for the Foonly):

TAd.. t(.) = 205 n Ig Ig n Isee.

= 77 n lgn psee. (8.1)

Further experimentation as well as fine tuning of the algorithm would provide more conclusive

answerS.
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§9 An Implementation of Adaptsort

The algorithm was implemented in InterLisp because of the flexibility it provides, and is niot

intended to be particularly fast. A Pascal version was written first, but it looked quite obscure
compared to this Clisp version, and is certainly longer. (Clisp looks more like Algol than Lisp,

but may be difficult to follow if you are completely unfamiliar with Lisp) The following is
very similar to the version of Adaptsort which was implemented, but all unnecesary details,
declarations and obvious functions are not included. Nonetheless, this is not intended as a

description of the algorithm, for which the reader should see section 2. As regards to notation,
let is a lambda binding (binds a list of identifiers to a list of values which follow the be), Z:1 is
equivalent to (car x) and z::1 is equivalent to (cdv x). Keywords are set in bold font.

(e Ad. sort to the core of the sort. and in relatively similar to)

(e the Pidgin-Algol description of the algorithm. (see Section1)

(AdSort

lambda (S Size) (05 ist a parameter; Size a local variable)

Size - (length S)

(if Size to smaller than Threshold

then (Quicksort S) (o Faster for smaller sets)

else (let Npartit Rack be (fix (aqrt Size)) nil do (e lack and Npartit are local variab les)

(AdStata S) (o Calculate parameters of distribution)

(if Slope > ManSlope

then (Quickinort S) (4 Couldn't break down this subset vell)

else Rack - (array Npartit) (s Rack holds pointers to partitions)

[repeatwhlle S do (X .- S) (o Now. partition the set 8)

4 (S S::1)

(Insert X Rack (AdSlot]

(AdJoinsorta 1) (o sort all partitions and concatenate them)

* (0 Estimates the parameters of a linear approximation to the)

(e distributem of the values of the keys. it works as a)

(side ef feet by setting the global values SLOPE ad ORIGIN)

(Aft(5)

(*etn Avg (for Value Io S sm Value) / Size)

[aetn SunDev (for Value In S sum. (as Avg-Value)

£ [setn Slope

(if (TooSmall SumDev) them oo else Size /(4 *SumnDev)

(*eta Origin 0.5 Slope *Avgj)



N g. An Implementation of Adaptsort

(o Adilot. which is the hasking function Be (a) as". the walse"

(o slope. origin and I to choose a slot (bin) in the rack)

(AdSlot

,Iarnhda(ull)
[setn Slot 1 + Npartit *(Origin + Slope 0 X-11

(if (Slot Is leow than 1)

then I

else( If Slot Is greater than Npartit

then Npartlt

else Slot)I)

(e Call recursively AD ort to sort each list hanging from the rack. and)
(ethen jo*in all lists one after the other to return, the sorted sequence)

(AdJoinsorte

[lamibda nil

(for i from 1 to Npartit do (seta Rack i (AdSort (alt, Rack 1) 'nobind)))

(setn FirstIndex 1)
(while (sit Rack Firstlndex) - nil do (setn FirstIndex Firstlndex+1))

LaitNonEmpty - Ptast (elt Rack Firstindex))

[for i from Firstlndex+1 to Npartit do (e go through the rack Joining sublisea)

(CurrList .- (alt Rack I)

(if CurrLiut C0 Gone @lots of the rack my be emptyail))
then (ftplaed LastNonEmpty CurrLiat)

LastNonEanpty '-(last CurrLiut)

else nil]

(slt Rack Firstindexi) (e return a pointer to the concatenation)
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§10 Concluding Remarks

We have presented an algorithm that has an asymptotic O(nlglgn) worst-case time
complexity for sets of bounded length keys with bounded repetitions (such sets satisfy our

fractalness criterion). We have also seen that from a practical point of view, we may sort

conveniently sets that do not satisfy YC, and that even for such sets, the degradation of
performance may be small in practice, and furthermore cannot be worse than O(n Ig n) for any
distribution.

The algorithm is fast, is simple to code and is particularly well suited both for parallel
processing and for external sorting. For data which is already in a list it works basically "in
place".

I would like to draw the attention of the reader to several problems which were left
unsolved:

(a) The calculation of az (the slope below which Adaptsort is faster than Quicksort)
was done taking n. (the sequence size beyond which Adaptsort is faster than Quicksort), as a
constant and n. was defined as a constant based on a the selection of the partitioning function
r(n) = n' /2 . This was useful to establish bounds and asymptotic estimates, but to improve the
practical performance of the algorithm, it would be worthwhile to consider them as coupled,
and find their optimal values.

(b) We have mentioned that there is a continuum of algorithms in between Quicksort and
Distributive Sorts, which results from the values of p and q that we chose for determining
the number of sets into which we partition each set of size n according with r(n) = pnC.

This continuum is reflected in the properties of interest of the algorithms. Namely, Adaptsort
4 (p = 1, q = 1/2) has both a time complexity and a distribution sensitivity that are between

Quicksort (p = 2, q = 0) and Distributive Sorts (p = ilk, q = 1). Optimality conditions
under diverse criterions could be developed.

(c) We used a partitioning scheme (ECDF MU " M ') that has a provably good asymptotic
behavior, but replaced it with a more robust one (ECDFA9WD..) for practical applications.

Proofs of its asymptotic behavior would be interesting.

the (d) We introduced a "badness" measure for distributions (YC), we used it profitably for
the asymptotic analysis, and we showed that this is a sufficient, but not necessary condition.
We discussed a tight condition, that happens to be recursive. It would be interesting to provide
non-recursive conditions tighter than X.

(e) We briefly described how Adaptsort can be implemented in a parallel machine, but
we did not analyse this further. It would be interesting to develop realistic models of its
behavior (we assumed a global shared memory, for which contention must be dealt with;
another alternative could be local memories, in which case the necessary information transfers
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must be taken into account) and to experiment with implementations.

(f) Our experimental version could certainly be improved and more comparative tests run
on real data so as to obtain more conclusive evidence as regards to the practicality of Adaptsort.

* p
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